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The round turbulent jet in a cross-wind 

By J. F. KEFFERAND W. D. BAINES 
Department of Mechanical Engineering, University of Toronto, Toronto 

(Received 20 July 1962) 

The flow of a jet directed normal to a uniform, steady cross-wind is considered. 
Experimental results show that for various jet strengths, the position of the jet 
in space, when stretched by the ratio of jet to cross-wind momenta, is described 
by a single function. Exceptions exist at very low velocity ratios where a shift 
of the potential core is evident. A natural system of axes is used to define im- 
portant directions of the flow. The integrated equation of motion along the pri- 
mary jet flow direction is made dimensionless after the general method of Morton 
(1961) and a virtual source is defined for the Bow. It is shown that a single func 
tional behaviour of the axial jet velocity exists for various velocity ratios if the 
jet is considered to originate from this source. Lateral velocity profles show a 
similarity when scaled by appropriate lengths and velocities but true self- 
preservation is not attained. 

1. Introduction 
The turbulent jet injected normal to a uniform, steady cross-wind is an example 

of a free turbulent shear flow. It is, however, inherently more complex than such 
cases as the jet entering a quiet medium or the wake at locations distant from a 
body. These possess geometric and kinematic properties which result in rather 
simple equations of motion, and by introducing physical concepts about the 
nature of free turbulence the distribution of mean velocity can be derived. There 
is thus a broad understanding of the flow pattern available for these simple free 
turbulent flows. 

In  this paper, the analysis of the jet in a cross-wind is based primarily on 
experimental observation of the flow pattern. Certain approximations are 
apparent, which when applied to the equations of motion, yield results similar 
to the simple cases. There are still important distinctions which prevent as com- 
plete a solution, however. The data, while not giving a comprehensive picture of 
the flow, should be useful in the solution of such practical problems as the dis- 
charge of waste gases from chimney stacks. 

Velocity magnitude and direction were measured by hot-wire techniques at 
a large number of points covering the whole region influenced by the jet. 
Exploratory tests were conducted with photographs of smoke carried in the jet, 
(figure 1, plate 1). It is seen that there is a distinct edge to the jet. This is the 
typical boundary of a free turbulent flow described by Corrsin & Kistler (1955). 
Some form of statistical definition of the edge must be used for the analysis 
of mean velocities. The one chosen, which was introduced by Squire (1950), 
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defines the edge of the jet as the surface where the velocity excess above the ex- 
ternal undisturbed flow, ( U -  Uo), is 10% of the maximum excess (Urn- Uo), a t  
a given cross-section. The location of the maximum velocity in the jet Urn, at 
succeeding positions downstream of the orifice defines the centre-line of the jet. 
It was noted that if cross-sections were taken perpendicular to the vector U,, 
the direction of flow within the region bounded by the jet edge was essentially 
parallel to U,. Following this line of maximum velocity, which is a stream-line, 
a jet is specified, analogous to the simple jet entering a quiet medium. Further 
measurements showed that relative to this centre-line, the lateral distribution of 
maximum mean velocity was an S-shaped curve. This was similar to the Gaussian 
distribution often used to describe the mean velocity distribution across a free 
jet. 

The characteristic free turbulent flow which ultimately develops is a result of 
the mixing of two potential streams. At the source, the jet has an almost uniform 
velocity profile and a low turbulence intensity (compared to that which is sub- 
sequently generated). It thus may be assumed irrotational. Similarly, the cross- 
wind, outside the region of influence of the jet flow, is effectively irrotational. 
Immediately upon entering the cross-flow, the edges of the jet are subjected to 
intense shear stresses resulting from the velocity gradient between the jet and the 
cross-stream. I n  the free jet where the external flow velocity is zero, a uniform 
entrainment of the surrounding fluid occurs. The entrained fluid is accelerated 
as the jet spreads and the jet fluid is correspondingly decelerated. In  the presence 
of the cross-wind this is complicated by the potential flow field surrounding the 
jet. The flow is decelerated at the upstream surface of the jet and creates a 
positive pressure region. The sides are subjected to a lateral shearing stress 
directed toward the rear. Jordinson (1958) has compared this flow to that around 
a porous cylinder with suction. Separation occurs at the rear and gives rise to 
a negative pressure region or wake. This initial stage of the flow is termed the 
zone of establishment and is similar to the free jet in that there is a constant 
maximum velocity, Urn, equal to the initial jet velocity q. This region extends for 
about five diameters for a free jet but is approximately one-half as long in the 
present case. 

Once the potential core has been consumed and the biggest eddies in the flow 
are of the order of half the jet width, the continued lateral diffusion of jet momen- 
tum effects a decrease of the maximum velocity along the centre stream-line. 
This region, which is highly turbulent throughout the entire jet cross-section 
is called the zone of established flow, and possesses characteristics similar to the 
free jet. The external flow is affected very little by the presence of the jet and 
the static pressure and mean velocity can be considered constant. 

At  low ratios of jet to cross-wind velocity the potential core is deflected by the 
pressure field. The point at which the axial velocity begins to decay is thus 
shifted downwind. For velocity ratios greater than about four, the potential 
core is conical with the point approximately above the centre of the jet orifice. 
Hence the effect of the pressure forces and lateral shear is primarily to change the 
shape of the cross-section from the circle at the outlet to a characteristic kidney- 
shape at  the end of the zone; see also Jordinson (1958) and Gordier (1959). The 
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sides of the jet possess less momentum than the centre because of the lateral 
mixing process and therefore are readily deflected. This effect is so severe that 
separation of the cross-flow from the edges of the jet occurs just behind the mid- 
section. A similar phenomena exists on a circular cylinder but with the jet the 
return flow in the centre of the wake is carried by the entrained fluid into the jet 
and so moves rapidly along the jet direction. The result is a pair of vortices 
attached to the jet which increase in strength throughout the zone of established 
flow. These are readily observed in smoke plumes from chimney stacks and have 
been previously described by Scorer (1958) and Turner (1960). Behind the 
vortices the cross-flow stream-lines become roughly parallel again but a large- 
scale turbulence persists as with the solid cylinder at a comparable Reynolds 
number. 

With simple jets, entrainment occurs only by the spreading of the turbulent 
front. In  the present case, this is augmented considerably by the action of the 
vortices which cause an internal circulation and hence large-scale mixing within 
the jet. In  addition, some external fluid with small momentum is carried into 
the centre of the wake by the lateral shearing action. The total mass flux across 
the outside jet boundary is, therefore, significantly greater than in the free jet. 

From observations and from considerations of the mechanics of the flow 
a general pattern of the established jet emerges. The strong mixing processes 
disperse the axial momentum over a steadily increasing area and thus the jet is 
continuously deflected downwind. The cross-sectional shape when viewed 
normal to the centre stream-line appears to remain approximately the same as 
that established at the end of the potential core, and it might be expected that 
mean velocity distributions taken along the lateral direction would show a simi- 
larity at successive cross-sections. Detailed measurements described later show 
this to be the case when the profiles are related by appropriate velocity and width 
scales. This however, is not a sufficient requirement for self-preservation and 
so the most general analysis of free turbulence cannot be applied to this flow. 
Observations of the motion far downstream lead to the conclusion that self- 
preservation is not approached in the limit. The mean velocity excess, ( U  - Uo), 
decreases very rapidly along the jet axis but the rotational velocity of the vortices 
decreases at a rate, an order of magnitude less than this. Thus the limiting con- 
dition is a pair of counter-rotating turbulent line vortices moving with the speed 
of the cross-flow. For initial and intermediate stages of the jet, however, the 
mean velocity in the vortices is much smaller than the velocity excess and may 
be neglected in the calculation of mass and momentum fluxes. It would appear 
that the properties of the limiting condition would be more readily studied 
in a simpler geometric configuration where the vortices are generated directly. 

2. Experimental technique 
The experimental investigation was conducted in a low-speed air tunnel, 

4ft .  by 8 ft. in cross-section with a test section 36ft. long. The jet was discharged 
normal to the cross-wind from a 8 in. diameter orifice with opening set flush into 
a circular plate. This plate, &in. aluminium and 1 ft. in diameter with a carefully 
streamlined edge, was required to eliminate the effect of the boundary layer in 
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the tunnel and was placed 6in. above the floor. An oil-vapour and nitrogen 
aerosol was used for the qualitative visual investigations. A compressed air 
supply was employed for the essential part of the experiment. A standard 
constant-current hot-wire anemometer was used to obtain the mean velocity 
contours and hence the mass and momentum fluxes along the direction of the 
jet flow. The wire wasorientated to read the maximumvelocityvector. Turbulence 
intensities were determined with an accurate random-signal voltmeter. 

3. Analysis T h e  deJEected j e t  
A system of axes, natural to the deflected jet is determined from experimental 
measurements and pertinent flow quantities are described along these principle 
axes (figure 2). 

The c-axis is the centre stream-line of the jet flow. 
The 7-axis is defined by the locus of maximum velocity along lines of constant 

y in a plane perpendicular to the centre stream-line. 
The [-axis is perpendicular to the c- and 7-axes. 
2, y and z are the vertical, lateral and longitudinal Cartesian co-ordinates 

relative to  the cross-wind with origin at the jet source. 

X 

I / 

FIGURE 2. Natural system of axes for the jet. 

Velocity ratios (R = q./U0) of 4, 6 and 8 were chosen to cover a range that 
might normally be expected in practice. However, it was noted that at the lowest 
jet velocity (R = a), the potential core appeared to be deflected by the strong 
pressure field set up around the jet by the cross-wind. The point at which the 
axial velocity began to decay thus did not remain along the z = 0 line. A further 
test at R = 2 verified this downwind shift. Results at a higher ratio, R = 10, 
were consistent with those previously found for R = 6 and 8 and the data are 
presented in figure 3. 

In  the absence of pressure gradients the deflexion of the jet depends inherently 
upon the amount of vertical momentum flux which it possesses relative to that of 
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the cross-wind, i.e. R2 = U?/U& For the larger velocity ratios this deflexion 
commences a t  the end of the zone of establishment where the turbulent mixing 
processes have extended across the entire jet. It is convenient to use this point, 
i.e. (xo, zo) (where zo = 0 for R > 4), as the origin for plotting the position of the 
jet in space. It is also convenient to divide the length dimensions by the orifice 
diameter d to give a pattern independent of the scale of the experiment. In 

I I / 
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FIGURE 3. Location of jet centre-line. 

addition, both x and z have been divided by R2 the momentum-flux ratio. The 
reason for stretching both co-ordinates is deduced from the momentum equation 
for the direction [normal to the jet. The rate of change of deflexion angle is found 
to be the ratio of the [-direction momentum of the entrained flow and the <- 
momentum of the jet flow. Thus if these momenta are proportional to 77; and Ug 
respectively the deflexion angle at any time is inversely proportional to R2. The 
co-ordinates are integrals of functions of jet velocity and deflexion angle and 
hence are also inversely proportional to R2. Several approximations must be made 
to produce this simple proportionality and thus the results shown on figure 4 
are somewhat surprising in the close fit to a single function for R > 4. A marked 
deviation is noted for R = 2 and 4 but these ratios must be considered as belonging 
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to different jet flows. The influence of the pressure field on the development region 
has resulted in the jet entering the established flow region a t  an angle less than 
90" to the cross-wind. Observations with a smoke tracer show this behaviour 
(figure 1, plate 1) .  Furthermore, the jet appears to cling to the wall and thus the 
proximity of a solid surface may restrict the entrainment process. 

(Z  - Zo)/dR2 

FIGURE 4. Jet  centre-line as a function of momentum flux ratio, R2. 

The same process ofreasoning and plotting of data can be applied tox and (along 
the centre stream-line and thus establish a relationship between the Cartesian and 
natural system of axes. Figure 5 is a plot of the appropriate parameters and as 
might be expected a single curve is obtained for the larger velocity ratios. No 
deviation is seen for the small ratios which indicates that the depth of penetration 
is not sensitive to the angle of the jet at the end of the potential core. More 
data are required a t  large values of ( ( -c0) /dR2 if this trend is to be verified for 
large R and the limiting conditions specified. These measurements are difficult 
to obtain because of the small velocity excess and the high turbulence intensity 
which makes the location of the velocity maximum uncertain. The value of x 
for very large 5 is of particular practical interest. In  the literature the general 
implication is that there is a finite depth of penetration. This, however, is not 
consistent with the x-direction momentum equation. In  the absence of pressure 
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forces the x-directed velocity must be finite for all x .  The experimental data 
presented in figure 5 do not indicate an asymptotic behaviour but the range is 
too short. However, visual observations with a smoke trace show that at large 
distances (z/d M 100) the jet continues to rise. 

FIGURE 5. Penetration of the jet as a function of momentum flux ratio, Ra. 

Equations of continuity and momentum 
The experimental results indicate that the gradient of the linearizing factor in 
the [-direction is small with respect to the other terms in the equations. In 
addition, Reynolds number similarity (Townsend 1956) obtains since the 
Reynolds number of the flow is large enough for viscous effects to be ignored. 
With these assumptions the equation of continuityis readily obtained by equating 
the rate of change of mass flux across the jet-defined cross-section to the flow 
of mass into the jet across the outer edge per unit increment in 5. The resulting 
equation is 

in which U, and h, are the velocity and linearizing factor for the 5 co-ordinate, 
Ui is the inflow velocity across the circumference C of the jet, and A is the cross- 
sectional area. The momentum equation for the 5-direction is obtained in a 
similar manner by equating the rate of change of momentum flux in the jet to 
the momentum flux across the elemental circumferential area. In  the notation 
used above this is 

$ $ / p U ; d A  = 
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Entrainment 
In  simple free turbulent shear flows the eddies which effect the turbulent entrain- 
ment of exterior fluid are characterized by the relative velocities of the two fluid 
streams. In  the present case, the mechanism of entrainment is complicated by 
the peculiar vortex formation at the rear of the jet. It would be expected therefore 
that the inflow is proportional more to the difference between jet velocity and 
cross-wind velocity, rather than the local parallel component of the cross-wind. 
Thus assuming that N (U, - Uo), where U, is some representative velocity with- 
in the jet, an entrainment coefficient can be defined as 

E = u,/(v,- UO), 

which for this particular flow is not necessarily a constant. It is realized that this 
formulation breaks down for R = 1 but this is not a serious defect because this 
case does not appear to exist in the form discussed above. For the jet and cross- 
wind velocities equal the zone of established flow would probably be a uniform 
flow in which Ui = 0. An alternative expression for E based on the vector velocity 
differences requires the inclusion of the local jet deflexion angle thus complicating 
the experimental analysis. Its use did not appear justified. 

If mean velocity profiles are similar, the choice of a particular U, is quite arbi- 
trary, since it need only represent the magnitude of the jet velocity. For simple 
jet flows, the centre-line velocity U,, is usually chosen. If integral relations are 
used, the averaged velocity over the jet cross-section q, is conveniently employed. 
With this, the following expressions are defined, 

w = JA U,dA = r s q ,  m = JA U2,dA = r2  = r 2 E ( q ) 2 ,  (3) 

where k is a momentum coefficient, approximately unity in the present case, 
which occurs because of the non-uniformity of the velocity profiles, and r is an 
effective radius of the jet cross-section equal to A+. 

is averaged over the circumference, the entrainment 
of mass and momentum fluxes can be simply expressed, as 

If the inflow velocity 

where s is a shape factor for the jet cross-section equal to At/C,  and the product 
E ( q  - U,) U, is the averaged contribution to the axial momentum flux of the jet 
resulting from the component of the external fluid parallel to the jet U, which is 
entrained by the flow. It would be expected that the concomitant variables, E 
and Up, are functions of 6 and R. It is necessary to determine their values 
experimentally. 

Curvature of the jet axis is small for the high velocity ratios where similarity 
of profiles could be reasonably assumed. The linearizing factor, h,, was calculated 
at the point of maximum curvature and found to be approximately 0.98. Con- 
sistent with the level of accuracy of the investigation, it was assumed unity at  
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all points along the axis. The statements of mass and momentum flux thus 
simplify to 

( 4 )  

( 5 )  

W 3 p v )  = srpE(0 ,  - U,), 

d /d t (pm)  = srpE(G- U,) Up. 

Dimensionless representation 

The jet flow is completely turbulent by the time it reaches the end of the zone 
of establishment. It is convenient to refer to this point, to, as the eflective source 
for the turbulent jet. Dimensionless values of mass and momentum flux are 
defined with respect to the flux values at this position, pv, and pm,, and are 
correspondingly 

The expression = (v,/sEm$)dX 

is introduced to establish a dimensionless distance along the jet axis, 

where E = E( t ,  R).  

less variables into the flux equations (4) and ( 5 )  yields 

V = pv/pvo, M = pm/pm,. 

x = ( s ~ b o p d E ,  

Following the general method of Morton (1961),  substitution of the dimension 

where B = kv,U,/m,, a function of R only, and F = v,U,/m,. The solutions of 
these differential equations are subject to the boundary conditions at the effective 
source, M = 1, where V = 1. The dependence uponX canbeeliminatedbydividing 
equation (7) by (6), giving 

The functional behaviour of F is important to the solution but unfortunately 
cannot be predicted from the analysis. It is necessary to determine F experi- 
mentally. 

Mass and momentum fluxes were measured for velocity ratios of 4, 6 and 8 
and are plotted in figure 6 to show the relationship between M and V. It is seen 
that F ,  which is the slope of the ( M ,  V)-function, is constant for each R and thus 
equation (8) can be integrated directly yielding the linear relation 

dM/d V = F. (8) 

M = l + F ( V - - l ) .  (9) 

The region 0 < V < 1, represents the hypothetical flow for the fully turbulent 
jet and has no physical counterpart in the real flow. The point V = 0 defines 
a virtual source of zero mass flux but finite momentum flux, (M),=, = 1 - F ,  
the value of which depends upon F ,  or, since P = FfR), the velocity ratio of the 
jet. To examine the relationship between mass flux and position along the jet 
axis, equation ( 6 )  is rearranged as 

ax - (kM)* 
rn’zzv’ 



5 -  

4 -  

3 -  

M 

2 -  

a result derived by Morton (1961) for the jet in a parallel stream. The dimension- 
less location of the effective source is obtained by letting T' = 1, giving 

x, = +[l-(l-F)q/P(l-P). (12) 

In terms of the entrainment coefficient E,  the axial distance may be expressed as 

I I I I I 1 

0 R = 4  - 
0 R = 6  

0 R = 8  

- 
4>:/ 

//,o - 

0 /- - 
/d!k€+O 

where tV is the location of the virtual source. In  particular the effective source is 

and any position along the jet axis from the effective source is given by the 
definite integral 
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(10) 
ax k q l + P ( V - l ) p  ~- 

dV - 1-P+ B(P-B)'  

with the appropriate boundary condition V = 0 at X = 0, the requirement of the 
virtual source. 

Experimental measurements show that the term V ( F  - B )  is small with respect 
to the other terms in the equation for small values of V and may in the first 
approximation be neglected. In  addition, i$ is approximately unity. With these 
simplifications the relationship may be integrated directly, since P = P(R) only, 
to give 

(11)  x = f([l+E"(V-l)]~-(l-P)+)/P(l-F) 
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The entrainment function was determined from measurements of mass flux 
along the jet axis for the various velocity ratios. It is presented in figure 7 
and is seen to depend upon 6 and R. Near the effective source, the magnitude of 

V 

FIGURE S. Relationship between dimensionless mass flux and dimensionless distance 
along the jet axis. - - - - Values calculated from equation (11). 

E is of the same order as that found for the simple jet flows (Morton 1961). The 
function was integrated graphically to evaluate equation (15) and using the 
effective source t,, as a matching point the results were compared to the approxi- 
mate mathematical expression, equation (l l) ,  in figure 8. The agreement is 
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satisfactory at moderate values of V but tends to diverge for large V .  There 
appears to be no single reason for this divergence. 

The location of the virtual source may be estimated from equation (14). 
However, E cannot be measured in the region < < to so it is necessary to extra- 
polate on figure 7. The value of < for which the definite integral is equal to  X ,  
(equation (12)), is the location of the virtual source in real space. This was 
determined for velocity ratios of 4 , 6  and 8 and in each case the virtual source lay 
below the orifice. The distances were 1.87, 1-28 and 0.80 diameters respectively 
and appear to be in reasonable agreement with Ribner (1946) who found the 
virtual source for the jet in a parallel stream to lie 2.3 diameters upsteam from 
the discharge point. 

4. Flow similarity in the jet 
When related to the natural system of axes, the established jet flow appears 

to  have many of the bulk characteristics of the free jet. The flow dimension in 
the direction of jet motion is a t  least an order of magnitude greater than the lateral 
dimension and this makes possible the usual boundary-layer type of assumption 
which neglects longitudinal diffusion with respect to lateral diffusion. Static 
pressure variations are small and the jet width increases monotonically in the 
downstream direction. It is natural to inquire if this resemblance to the free jet 
is retained in the detailed structure of the flow. 

It is immediately evident that the flow is not completely self-preserving in the 
sense defined by Townsend (1956). The cross-wind would need to be an order of 
magnitude larger or smaller than the jet velocity excess for the equations of 
motion to be reducible to the appropriate form. Although the free jet meets these 
conditions for mean flow quantities, true self-preservation, as evidenced by simi- 
larity of the turbulence profiles, is not approached until twenty diameters from 
the source (Corrsin 1943). For the jet in a cross-wind, however, the flow at this 
distance is dominated by the twin vortices which prevents any asymptotic 
tendency toward similarity. Mean velocity distributions for the free jet are simi- 
larin the region of established flowwhen related to local characteristics, the centre- 
line velocity and the half-velocity width. There is reason to expect that this 
might also be found for the deflected jet in intermediate regions where the vortices 
have not yet become the primary controlling influence on the flow. This is 
discussed below. 

The similarity to be expected in the present situation should show an 
independence of the cross-wind velocity. Also, as with other free turbulent shear 
flows, Reynolds-number similarity is assumed, i.e. viscous effects can beneglected. 
Therefore, in the most general analysis, mean and turbulent velocity distributions 
are functions only of t / d ,  r / d ,  </d and R. To achieve a universal representation of 
this flow, i.e. a similarity solution, independence of R is sought. Kinematic 
quantities should thus be able to be described only in terms of a local length 
scale (say the half-velocity width) and a local velocity scale. For the latter, 
i t  would appear that the velocity excess above the cross-wind is the most signifi- 
cant since at large distances downstream the jet velocity approaches U,. It 
might be expected that from a consideration of the jet purely as a momentum 
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phenomena, the velocity excess could be defined in terms of the local parallel 
component of the cross-wind. However, the normal component as well contributes 
significantly to the jet spreading and must be included. The simplest combination 
of these components is of course U,, hence (U - U,) is the most reasonable choice. 
Experimental results indicate that similarity is indeed found only for ( U  - U,). 

I I I I I 
0.5 1 .o 1.5 2.0 2.5 

l l / l l g  
FIGURE 9. Lateral distribution of jet velocity. 

Figure 9 presents the velocity distribution along the lateral direction (the 
7-axis) a t  successive ( positions in the zone of established flow. When related in 
terms of the characteristic velocity, (Urn - U,), which is the velocity excess at the 
jet centre, and a characteristic length 7*, which is the point where (U-U,) is 
one-half (Urn- U,), a single S-shaped curve is obtained for the velocity ratios 
4, 6 and 8. A considerable scatter of the points is evident but no consistent 
deviation exists. The axial component of turbulence intensity, ui, was measured 
at  one station $‘/a = 5.6 (figure 10). It is seen, however, that these profiles, 
although having a common shape, are not independent of the velocity ratio as 
are the mean velocity profiles. 

The characteristic velocity and length scales should be single functions of the 
distance along the jet if the flow is to exhibit self-preservation of the mean velocity 
profiles. Logically, this distance should be that measured from the virtual source, 
$‘/a. On this basis, figures 11 and 12 indicate that the velocity excess, made 
dimensionless by dividing by the maximum excess, (q. - Uo), and the jet width at  
the half-velocity point, have the required behaviour in that both quantities 
are independent of the velocity ratio. (It is seen from figure 11 that the decay 
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FIGURE 11. Decay of jet axial velocity compared to free jet: (a )  plotted from orifice 
outlet; ( 6 )  plotted from virtual source. - - - - Free-jet data of Albertson et al. (1980). 
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of (Urn - U,) is a function of R when plotted from the orifice outlet. This can also 
be inferred for the jet spread in figure 12.) These results are analogous to those of 
the free jet and are consistent with the idea of self-preservation which is implied 
by the single curve in figure 9. The velocity excess, however, decreases much more 
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rapidly than for the free jet results of Albertson, Dai, Jensoii & Rouse (1950) 
and the rate of decrease increases with distance away from the source. This is 
because the entrainment is augmented by secondary effects, primarily the twin 
vortices, which do not exist in the free jet. The lateral spreading of the flow, which 
has the same general trend as that for the free jet, does not appear to be affected. 

O R = 4  

O R = 6  

Cld 
FIGURE 12. Lateral spread of jet determined a t  the half velocity point, 

i.e. ( U -  U,)/( U,-  V, )  = 4. 

0 2  

0 1  

0 
----- I I I 

10 0 2 4 6 8 

e l d  
FIGURE 13. Turbulence intensities along jet axis compared to the free jet. 

_ _ _ _  Free-jet data of Corrsin & Uberoi (1950). 

This is not surprising since the vortices have been observed to increase in dia- 
meter at a much smaller rate than the spread of a free jet. 

Since the effective source is the point a t  which the axial velocity begins to 
decay, the distance between the virtual and effective sources should be approxi- 
mately constant if the jet is to display a similar kinematic behaviour for the 
various velocity ratios. The data verify this since for R = 4, 6 and 8, the values 
are 3.46,3.20 and 3.10 diameters, respectively. The decreasing size of this distance 
with increasing R may indicate that similarity with velocity ratio may not be 
found for a very large range of velocity ratios. 
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The distribution of turbulence intensity along the jet axis also reflects the 
effects of the more intensive entrainment processes. In  figure 13 the intensity of 
axial turbulence, u;, is plotted against the distance from the virtual source, 
t ’ / d .  Free-jet measurements are included for comparison. The maximum turbu- 
lence intensity occurs a t  approximately the same position (relative to the mean 
velocity) in both cases but is considerably larger in magnitude for the jet in a 
cross-wind. A variation in intensity with jet strength, moreover, indicates that 
the similarity observed for the mean velocity, is not retained in the fine structure 
of the flow. 

5. Discussion 
All of the experimental evidence indicates that the jet flow displays similarity 

along the natural system of axes. This conclusion may be of more extensive 
significance than for the flow considered here. Other cases of free turbulence in 
which symmetry is lacking might be analysed with conventional methods by 
the proper choice of co-ordinates. The measurements were not carried out at a 
sufficient distance to show if the flow approaches a self-preserving form in the limit, 
i.e. unique local distribution of turbulent intensity and Reynolds stresses based 
on (Urn - UJ. The available equipment did not allow the measurement of the small 
velocity excess and Reynolds stress. It is the author’s opinion that since the line 
vortices are the dominant mixing agents they should be studied in a simpler 
and more controllable configuration. The vortices exert a major effect on the flow 
and thus mean vorticity can be expected to play an important part in other free 
turbulent flows. 

The experimental study reported in this paper was supported by a grant from 
the University of Toronto. 

REFERENCES 

ALBERTSON, M. L., DAI, Y. B., JENSEN, R. A. & ROUSE, H. 1950 Diffusion of submerged 
jets. Trans. A.S.C.E. 115, 639. 

CORRSIN, S. 1943 Investigation of flow in an axially symmetrical heated jet of air. 
N.A.C.A. War Rep. W94. 

CORRSIN, S. & KISTLER, A. L. 1955 Free-stream boundaries of turbulent flows. N.A.C.A. 
Rep. no. 1244. 

CORRSIN, S. & UBEROI, M. S. 1950 Further experiments on the flow and heat transfer in 
a heated turbulent air jet. N.A.C.A. Rep. no. 998. 

GORDIER, R. L. 1959 Studies on fluid jets discharging normally into moving liquid. 
St Anthony Falls Hyd. Lab., University of Minnesota, Tech. Paper, no. 28, Series B. 

.TORDINSON, R. 1958 Flow in a jet directed normal to the wind. Aero. Res. Council, R h 
M ,  no. 3074. 

MORTON, B. R. 1961 On a momentum-mass flux diagram for turbulent jets, plumes and 
wakes. J .  Fluid Mech. 10, 101. 

RIBNER, H. S. 1946 Field of flow about a jet and effect of jets on stability of jet-propelled 
airplanes. N . A  .C.A. War Rep. L 2 13. 

SCORER, R. S. 1958 Natural Aerodynamics. Pergamon Press. 
SQUIRE, H. B. 1950 Jet flow and its effect on aircraft. Aircraft Engng, 22, 62. 
TOWNSEND, A. A. 1956 The structure of Turbulent Shear Flow. Cambridge University Press. 
TURNER, J. S. 1960 A comparison between buoyant vortex rings and vortex pairs. 

J .  Pluid Mech. 7, 419. 



Journal of Fluid Mechanics, VoL. 15, part 4 Plate I 

FIGURE I. Photographs of jet in a cross-wind a t  1/1300 sec exposure. 
(a )  U ,  = 5 ft./sec; R = 3. ( b )  U ,  = 5 ft./sec; R = 8. - - --, Jet  axis. 
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